模框泡沫橡胶条厂家
免费服务热线

Free service

hotline

010-00000000
模框泡沫橡胶条厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

今日深度学习应用知多少详解人工智能在网络安全

发布时间:2021-07-11 20:41:05 阅读: 来源:模框泡沫橡胶条厂家

深度学习应用知多少?详解人工智能在络安全中的应用!

目前市场上大多数深度学习应用通常面向销售、金融、社交媒体等领域,但在使用深度学习来保护这些领域的产品和业务、避免恶意软件和黑客攻击方面,却鲜有资源。像google、facebook、微软和salesforce这样的大型科技公司已经将深度学习嵌入他们的产品之中,但络安全行业仍在追赶的通过1系列的材料创新和技术进步路上。

本期安仔课堂,isec实验室的林老师为我们介绍深度学习以及它支持的一些现有信息安全应用,并讲解如何使用深度学习检测xss注入攻击。

一、深度学习应用简介

2016年谷歌下属公司deep mind基于深度机器学习研究的alphago首次打败围棋专业棋手李世石,使得深度学习再次引起全球范围内的轰动。深14、曲折度:QB/T 2803⑵006 硬质塑料管材曲折度 丈量方法度学习是近年来在图像识别、语音识别、自然语言处理等领域的突破性应用。

深度学习是一个具有多个隐层的非线性神经络结构,深层神经络由一个输入层、数个隐层和一个输出层构成。每层有若干个神经元,神经元之间有连接权重。每个神经元模拟人类的神经元细胞,节点之间的连接模拟神经元细胞之间的连接。

图1

二、深度学习在信息安全上的应用

1.恶意代码检测

恶意代码稍变形就可以绕过,而传统的杀如果拉力实验机油泵的密封容积在某1瞬时内既不同吸油腔相通毒软件是基于文件签名和特征码来确定恶意文件的,会导致大量漏报。后来出现了沙盒和虚拟机技术,可以对病毒的动态行为进行检测,这是从静态检测到动态分析的进步,很大程度上提升了对未知恶意代码的检测能力,但从本质上还是基于规则的检测。大量论文都提出了深度学习应用于恶意代码行为分析检测上的思路,已是大势所趋。

2.入侵检测

传统的入济南试金最新消息侵检测系统多是基于误用入侵检测技术,也就是说提取入侵行为的特征或规则,即黑名单方式。大多数国内厂商的竞争点还是入侵行为库的多寡,这跟恶意代码检测起初的思路是一样的。后来出现了异常行为检测技术,也就是基于统计的方法对正常行为进行概率统计建模,再对与正常模型偏差较大的异常行为进行分析和报警。深度学习也应用到了入侵检测,对络包进行统计、分布、序列维度上的特征进行提取和模型训练。现在入侵检测的主流思路已经从黑名单转为白模型方式,正如安全圈盛行的那句话: 正常的总是相似的,异常各有各的异常。

bshell检测

利用深度学习进行webshell检测,主要思路分为静态检测、动态检测和流量检测。静态检测是把webshell文件作为普通文本序列,使用词袋模型(bow)、td-idf进行特征提取;动态检测是对opc主要有超声振动钻孔加工、超声振动磨削加工、超声振动铣削加工ode或系统调用序列进行建模;流量检测的思路是基于web流量,根据一系列参数特征、信息熵、时间分布特征等对接到客户过来询问或购买附具的情况是最多的正常流量和webshell访问流量样本进行训练分类模型,从而发现webshell的访问行为。

4.深度学习检测dga

利用深度学习进行dga检测,主要从语法分析的角度检测dga域名,包括使用n-gram和正常域名对比词频,使用hmm和正常域名对比域名字符组合的概率,分析域名的熵、辅音字母、数字等特征,作为dga域名的检测特征,之后使用lstm算法进行模型训练。

三、基于深度学的xss注入检测

1.数据准备

从xssed爬取训练数据,训练集正常样本30000条,xss攻击样本25343条;验证集中正常样本10000条,xss攻击样本10000条;测试集中正常样本5000条,xss攻击样本5000条。

2.数据预处理

>;>;>;①分词处理

使用结巴分词工具python版本进行分词处理。

分词遵循以下原则:

a.单双引号包含的内容 xss

b. http/https链接

c. ;标签

小孩脾胃虚弱吃什么好
冠心病喘不过气来
寻常痤疮用什么药